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Path integral formalism (1)

e Amplitudes for transition from an initial state |a,t,) to a
final state |b, ) in imaginary time T = ¢, — t,:
tp

A(a7 ta;b7tb) = <batb|TeXp {_ dtﬁ(ﬁ?ﬁa t)} |a’ ta>

ta
e Dividing the evolution into N time steps € = T/N, we get

A(a7 ta; b7 tb) - /dql e quflA(OQ Q17 6) e A(Q}vfluﬂ; 6) )

o Approximate calculation of short-time amplitudes leads to

1 -
A(a, tq; b, ty) = W/dqlwdqjv_le S

o Hagen Kleinert, Path Integrals in Quantum Mechanics,
Statistics, Polymer Physics, and Financial Markets, 5"
edition, World Scientific, Singapore, 2009.
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Path integral formalism (2)

e Continual amplitude A(a,t,;b,t) is obtained in the limit
N — oo of the discretized amplitude Ay(a,t,;b, ),

A(a, ta;b,tb) = ]\}im AN(a, ta; b,tb)

o Discretized amplitude Ay is expressed as a multiple
integral of the function e~5¥, where Sy is called
discretized action

o For a theory defined by the Hamiltonian operator
H(p,q,t) = %pQ + V(q,t), (naive) discretized action is

N-1 52
Sy = Z (2—2 —I—eV(Xn,Tn)) ,

n=0

tn+t
where 8, = dn+1 — dny Xn = Cln+12+qn Tn = n+2n+1 .
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Discretized effective actions

e Discretized actions can be classified according to the speed
of convergence of discretized path integrals
o Improved discretized actions have been earlier constructed,
mainly tailored for calculation of partition functions
e split-operator techniques
e multi-product expansion
o Sixth order expansion: Goldstein and Baye, PRE 70,
056703 (2004)
e This cannot be easily extended to higher orders, nor such
an approach was developed for general transition
amplitudes

We introduce the ideal short-time discretized action
62
S*(x,0;e,7) = % +eW(x,0;¢e,7)

pendent potentials
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Results for depen;:leﬁt potentials

Results for time-independent potentials

e For time-independent potentials, we have developed a
recursive formalism that allows calculation of the
short-time expansion for W to arbitrary order in the time
of propagation ¢ [PRE 79, 036701 (2009)]

o Applied for accurate calculation of energy eigenstates and
eigenvalues using the numerical diagonalization of the
space-discretized matrix of the evolution operator [PRE
80, 066705 (2009), PRE 80, 066706 (2009)]

@ One-time-step approximation to the path integral applied
to the numerical study of properties of fast-rotating
Bose-Einstein condensates, using the (very) high order
effective potential [PLA 374, 1539 (2010)]
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Recursive approach

Schrédinger’s equation (1)

o We start from Schrodinger’s equation for the short-time
amplitude A(a,t,;b,tp)

I:as + %(ﬁa + ﬂb)] A(a> ta? b7 tb) = 0’
[87 + (Hy — ﬁa)] A(a, ta;b, 1) = 0,

where H, = H(—i8a,a,t4), € =ty — ta, T = (tq + tb)/2
e If we change the variables a, b to x and x = §/2, and write
the amplitude as

( ;Mdm —%)_CQ—EW(X,)_(;E,T)
2me

we can obtain the equation for the effective potential W.

A(x,X;e,7) =
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Schrédinger’s equation (2)

@ The equation for W:
_ 1 1 -
W+x-0W +ed.W — §582W— —ed’W

—2(OW) 4 S 2OW)? = (Ve + V).

l\DI.—\OO

8
where Vi = V(x £ Xx,7+¢/2)

o In order to solve it, we use short-time expansion of W in a
form of double power series

W(x,x ZZ{ka ;7)™ k+Wm+l/2k(x X; T)gm_k}a
m=0 k=0
Wik (X,X;T) = Ty, -+ Ty, ciﬁi};m (x;7),

i1, 7f2k:+1

Wm+l/2,k(x7 X; T) =T, x12k+1 m+1/2,k (X; 7—) y

DPG10, Regensburg
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Recursive relations (1)

o After inserting the expansion, we obtain two recursion
relations for W coefficients:

(m—k)
(m, k) (% - 8)2*

(28)! (m — k)l 2m—F

- Z {3Wl,r cOWp1ak—r +OWip1)2, - OWp 152 k—r—1
Lr

+OWi - OWp 11 p—ri1 + OWig1 )0, 5Wm—l—3/2,k—r} ;

(1= T(m, k) (x- 9+ "y

2+ 1) (m — k)12 F
+0* W—1/2,6 — Z {BWl,'r‘ cOWo 32 kv + W10 OWpy g2 —r

l,r

+OWii1/2, - OWi—i—1 jo—rt1 + OW, - 5Wm—z—1/2,k—r+1} :

8(m+k‘+ 1) Wik =38 +0? W k+1 + 02 Won—1,k

8(m + k+ 2) Wm+1/2,k =38 + 52 Wm+1/2,k+1
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Recursive relations (2)

e Diagonal coeflicients can be directly calculated
1
(2m +1)!

Wm+1 /2m = 0.

Wonm (x-9)*™V,

o Off-diagonal coefficients are obtained from recursions using

the scheme S

0| @

1| «+O

2| ++—<1+0O

3| et
e B e o

m O
0 1 2 3 k
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Convergence of discretized amplitudes for the forced harmonic
oscillator Vino(z,t) = jw?2? — sin Qt, with w = Q =1 and
p=1,2,4,6,8,10,12, 14,16, 18, 20 from top to bottom on the
left, and for long time of propagation using MC simulation with
Nyc = 2 -10° on the right.
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Numerical results
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Convergence of discretized amplitudes for the time-dependent
harmonic oscillator Vg no(z,t) = %, with w = 1 and
p=2,4,6,8,10,12,14,16, 18, 20 from top to bottom on the left,
and for long time of propagation using MC simulation with
Nuic = 2 - 107 on the right.
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Tnne-dependent pule qual tlc oscxllatol

10° BT g ‘ 1 035215 -
N~ - Z
= 105 L \\:E-\\ﬂ "I-~~~.___..§ i P_2 +B
” ® =~ TTE— 0.35210 p=
) 10 ,\\ \\\ e i i AN p=3 ® -
e N . o o\
A (U SN e T~ | o 03s05f N
=2 A ~o S = w
< 108 \\ ~e. -| 9 N o
a o \ S~o S 03520 0N “m_
5 10° AN \\\ B S \\S\ ~<s_
g 100 o1 .f\ : S~ € ossis e - |
€ 0% poris . N\ 1 e,
< b AN 035190 | /
— 1022} p=3 @ * 1 i I/
p= 7 —A— ‘\
1o% » 035185 L=
1 10 100 1 10 100
N N

Convergence of discretized amplitudes for the time-dependent

pure quartic oscillator Vg pq(z,t) = —%)3, with ¢ = 0.1 and

24(1+
p=1,2,3,7 from top to bottom on the left, and for long time of
propagation using MC simulation with Nyic = 1.6 - 10'3 on the

right.
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Conclusions and outlook

o New method for analytic and numerical calculation of path
integrals for a general time-dependent non-relativistic
many-body quantum theory

@ In the numerical approach, discretized effective actions of
level p provide substantial speedup of Monte Carlo
algorithm from 1/N to 1/N?

o If the time of propagation/inverse temperature is small,
analytic one-time-step approximation can be used: path
integrals without integrals

@ We plan to use this approach to study quantum dynamics

e Evolution in real and imaginary time
e Solving of Gross-Pitaevskii-type equations

e AB, L. Vidanovié¢, A. Bogojevi¢, A. Pelster, arXiv:0912.2743
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