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Introduction (1)

Path (functional) integrals in quantum theories allow
Easy treatment of symmetries (including gauge symmetries)
Derivation of non-perturbative results (solitons, instantons)
Showing connections between different theories, or different
sectors of the same theory (bosonisation, duality)
Quantization (including generalizations to systems with no
classical counterparts)

Rich cross-fertilization of ideas from high energy and
condensed matter / statistical mechanics
Applications in all areas of physics, chemistry, material
science, even finance and economics
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Introduction (2)

Path integral formalism can be used for deriving
Semiclassical expansion
Perturbative expansion
Variational methods

However, mathematical properties of path integrals are far
from being sufficiently well understood
Many important models (or their interesting sectors)
require numerical treatment

Path Integral Monte Carlo (PIMC) is the most applicable
method
Widely used M(RT)2 (Metropolis) algorithm provides
optimal efficiency which is, still, unsatisfactory in many
cases
Our lack of knowledge on path integrals translates into
inefficiency of our numerical algorithms
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Introduction (3)

Basic notion of path integral formalism can be found in a
paper by Dirac [P. A. M. Dirac, Physikalische Zeitschrift
der Sowietunion 3, 64 (1933)] - Lagrangian formulation of
quantum mechanics
Fully developed by Feynman [R. P. Feynman, Rev. Mod.
Phys. 20, 367 (1948)]
Contrary to classical physics, where there is only one
trajectory for a given set of boundary conditions, in path
integral formalism all possible evolutions must be taken
into account
Each possible trajectory contributes to the transition
amplitude by a factor exp{ i

~S}, where S =
∫

Ldt is the
action that corresponds to the given trajectory

21 November 2007, Duisburg-Essen University A. Balaž: Effective Actions for Path Integrals
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Path integrals in quantum mechanics (1)

Path integrals are originally introduced in quantum
mechanics, where new expression is obtained for amplitude
for a transition from initial state |a〉 to final state |b〉 in
time T ,

A(a, b;T ) = 〈b|e
i
~ ĤT |a〉

The same approach can be taken in statistical physics, and
partition function can be expressed in a very similar form
Path integrals in statistical physics are said to be
imaginary-time path integrals,

i

~
T → −β =

1
kBTt

where Tt is the temperature
It is very common to work in imaginary-time, even when
considering quantum mechanics ( i

~T → − 1
~T )
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Path integrals in quantum mechanics (2)

The usual derivation starts with the following identity:

A(a, b;T ) =
∫

dq1 · · · dqN−1A(a, q1 ; ε) · · ·A(qN−1 , b; ε) .

It is obtained by dividing time evolution into N time steps
of the length ε = T/N , and by inserting N − 1
decompositions of the identity between short time
evolution operators. The above expression is exact.
The next step is approximative calculation of short-time
amplitudes up to the first order in ε, and one obtains
(~ = 1)

AN (a, b;T ) =
(

1
2πε

)N
2
∫

dq1 · · · dqN−1 e−SN
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Illustration of the discretization of trajectories
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Path integrals in quantum mechanics (3)

The continuum amplitude A(a, b;T ) is recovered as
N →∞ limit of the discretized amplitude AN (a, b;T ),

A(a, b;T ) = lim
N→∞

AN (a, b;T )

The discretized amplitude AN is expressed as a multiple
integral of e−SN , where SN is the discretized action
For a theory of the form

S =
∫ T

0
dt

(
1
2

q̇2 + V (q)
)

,

the (naive) discretized action is given as

SN =
N−1∑
n=0

(
δ2
n

2ε
+ εV (q̄n)

)
,

where δn = qn+1 − qn and q̄n = 1
2(qn+1 + qn).
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Numerical calculation of path integrals (1)

The path integral formalism is ready-made for numerical
computations
Physical quantities are given in terms of discretized
expressions in the form of multiple integrals like∫

dq1 · · · dqN−1 e−S
N

Monte Carlo integration method is tailored for integrals of
high dimensionality - it dominates over all other methods
However, while multiple integrals can be calculated
accurately and efficiently with MC method, N →∞ limit
remains to be done
This is the weak point of the above constructive definition
of path integrals
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Numerical calculation of path integrals (2)

The discretization used for the definition of path integrals
is not unique; in fact, the choice of discretization is
extremely important
The naively discretized action in the mid-point prescription
leads to amplitudes that converge to the continuum as 1/N

Using some special tricks one can achieve better
convergence (e.g. left prescription leads to 1/N2

convergence when partition functions, i.e. traces, are
calculated)
However, this cannot be done in a systematic way, nor is
applicable in all cases (left prescription cannot be used for
systems with ordering ambiguities)
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Typical convergence of naively discretized path
integrals to the continuum as 1/N
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Effective discretized actions (1)

Discretized actions can be classified according to the speed
of convergence of corresponding path integrals
Different discretized actions can be introduced, containing
various terms additional to the naive discretized action
These additional terms must vanish in N →∞ limit, and
must not change the continuum amplitudes; e.g.

N−1∑
n=0

ε3V ′(q̄n) → ε2

∫ T

0
dt V ′(q(t)) → 0

Additional terms can be added to discretized action in such
a way as to improve the convergence of discretized path
integrals
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Effective discretized actions (2)

Such improved discretized actions have been previously
constructed using a variety of approaches, including:

Generalized Trotter-Suzuki formulas
Improvements in short-time propagation
Expansions in number of derivatives

This has improved the convergence of generic path integral
partition functions from 1/N to 1/N4

The Li-Broughton effective potential

V LB = V +
1
24

ε2 V ′2 .

in the left prescription gives the 1/N4 convergence
ZLB

N = Z + O(1/N4)
Derivation from the generalized Trotter formula uses the
cyclic property of the trace - the 1/N4 convergence only
holds for the partition function
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Effective discretized actions (3)

Substantial improvement has recently been made through
the study of the relationship between discretizations of
different coarseness and deriving the unique integral
equation governing the flow to the continuum
This investigations allowed us to systematically derive
effective discretized actions which give give improved 1/Np

convergence of discretized path integrals
Here we present equivalent approach, based on the
calculation of ε-expanded short-time amplitudes
The presented approach is easily generalizable to
many-particle systems in arbitrary dimensions, which is an
important advantage compared to earlier method

21 November 2007, Duisburg-Essen University A. Balaž: Effective Actions for Path Integrals
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Ideal discretization (1)

An ideal discretized action S∗ would imply AN = A for all
amplitudes and all discretizations N

For massless free particles the naive and ideal discretized
actions are the same
The general completeness relation

A(a, b;T ) =
∫

dq1 · · · dqN−1 A(a, q1 ; ε) · · ·A(qN−1 , b; ε) ,

determines the ideal discretized action S∗n for propagating
for time ε to be

A(qn, qn+1; ε) = (2πε)−
1
2 e−S∗

n

The ideal discretized action S∗ is simply the sum of
expressions S∗n
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Ideal discretization (2)

We will calculate the ideal discretized action by expanding
it in power series in ε, i.e. by systematically calculating

A(qn, qn+1; ε) = (2πε)−
1
2

(
e−S

(p)
n (qn,qn+1;ε) + O(εp+1)

)
up to the desired order εp.
First step is to shift integration variable q = ξ + x about a
fixed referent trajectory ξ (same boundary conditions)

A(qn, qn+1; ε) = e−Sn[ξ]

∫ x(ε/2)=0

x(−ε/2)=0
[dx] e

−
R ε/2
−ε/2

ds ( 1
2
ẋ2+U(x;ξ))

Time is also shifted from t ∈ [nε, (n + 1)ε] to s ∈ [− ε
2 , ε

2 ],
and

Sn[ξ] =
∫ ε/2

−ε/2
ds

(
1
2
ξ̇2 + V (ξ)

)
, U(x; ξ) = V (ξ+x)−V (ξ)−xξ̈
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Ideal discretization (3)

The amplitude may now be written as

A(qn, qn+1; ε) =
e−Sn[ξ]

(2πε)
1
2

〈
e
−

R ε/2
−ε/2

ds U(x;ξ)
〉

,

where 〈...〉 denotes the expectation value with respect to
the free massless particle action
The above expression holds for any choice of referent
trajectory ξ

Since we are using expansion in small time step ε, to retain
all terms of the desired order it is necessary to take into
account that the short time propagation of the considered
class of theories satisfies the diffusion relation δ2

n ∝ ε

So, keeping all terms proportional to εkδ2l
n with k + l ≤ p

will be sufficient for obtaining the desired precision
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Ideal discretization (4)

The sought-after free particle expectation value can
calculated using the series expansion〈

e−
R

ds U(x;ξ)
〉

= 1−
∫

ds 〈U(x; ξ)〉

+
1
2

∫ ∫
dsds′

〈
U(x; ξ)U(x′; ξ′)

〉
+ . . .

By expanding U(x; ξ) around the tajectory ξ, we get

U(x; ξ) = x(V ′(ξ)− ξ̈) +
1
2
x2V ′′(ξ) + . . .

Expectation values 〈x(s) . . . x(s′)〉 can be calculated in the
usual way, by introducing a generating functional for the
free-particle theory whose propagator is:

∆(s, s′) =
1
ε
θ(s− s′)

(ε

2
− s
)(ε

2
+ s′

)
+ s ↔ s′
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Ideal discretization (5)

Using Wick’s theorem, one easily finds 〈x(s)〉 = 0,
〈x(s)x(s′)〉 = ∆(s, s′), etc.
Note that the calculation of the generating functional (and
also of the expectation values) is the same, irrespective of
the choice of ξ

In all cases the action and the boundary conditions for the
field x are the same, and so the propagator is always given
by the above formula
However, different choices of ξ are related to different
approximation techniques:

the choice of classical trajectory for ξ corresponds to the
semiclassical expansion
the choice of a linear referent trajectory for ξ leads to
short-time expansion
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Ideal discretization (6)

In order to perform the remaining integrations over s, due
to the explicit dependence of the referent trajectory on s,
we first expand the potential and all its derivatives in the
expression for U around some reference point
We choose q̄n as that reference point, corresponding to the
mid-point prescription
Once one chooses the referent trajectory ξ(s), all
expectation values that need to be calculated are given in
terms of quadratures
By choosing linear referent trajectories ξ(s) = q̄n + δn

ε s and
calculating up to terms of order ε2 (level p = 2), we obtain
for the action

Sn[ξ] = ε

(
1
2

δ2
n

ε2
+ V (q̄n) +

δ2
n

24
V ′′(q̄n)

)
+ O(ε3)
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Ideal discretization (7)

For the remaining free particle expectation value up to the
level p = 2 we get〈
e−

R
ds U(x;ξ)

〉
= 1− ε2

12
V ′′(q̄n)+O(ε3) = e−

ε2

12
V ′′(q̄n) +O(ε3)

Now we easily obtain the level p = 2 discretized effective
action

S
(p=2)
N =

N−1∑
n=0

ε

(
1
2

(
δn

ε

)2

+ V (q̄n) +
ε

12
V ′′(q̄n) +

δ2
n

24
V ′′(q̄n)

)

One can easily derive higher level effective actions
Generalization to many-particle systems in arbitrary
dimensions is straightforward and has been done
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Path integrals
Improving convergence

Research prospects

Effective discretized actions
Ideal discretization
Numerical results

Numerical results (1)

We have conducted a series of PIMC simulations of
transition amplitudes for a two-dimensional system of two
particles interacting through potential

V (~r1, ~r2) =
1
2
(~r1 − ~r2)2 +

g1

24
(~r1 − ~r2)4 +

g2

2
(~r1 + ~r2)2

Numerical simulations, based on our SPEEDUP PIMC
code, have been performed for different values of couplings
g1 and g2 and for variety of initial and final states
The continuum amplitudes A(p) have been estimated by
fitting polynomials in 1/N to the discretized values A

(p)
N

A
(p)
N = A(p) +

B(p)

Np
+

C(p)

Np+1
+ . . .

For all values of p the fitted continuum values A(p) agree
within the error bars
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PIMC: Convergence to the continuum
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Amplitude for the oscillator with large quartic anharmonicity
g1 = 10, g2 = 0, T = 1, NMC = 106, initial and final states
a = (0, 0; 0.2, 0.5), b = (1, 1; 0.3, 0.6).
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PIMC: Deviations from the continuum
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Deviations from the continuum of amplitudes for the oscillator
with large quartic anharmonicity g1 = 10, g2 = 0, T = 1,
NMC = 106 (p = 1), 107 (p = 2), 109 (p = 3), 1010 (p = 4),
initial and final states a = (0, 0; 0.2, 0.5), b = (1, 1; 0.3, 0.6).
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Numerical results (2)

One can also evaluate energy spectra of the model by
calculating its partition function in the path integral
formalism, and recalling Z(T ) =

∑∞
n=0 dne−TEn

The free energy of the system, F (T ) = − 1
T lnZ(T ), tends

to the ground state energy E0 in the large T limit.
Auxiliary functions

F (n)(T ) = − 1
T

ln
Z(T )−

∑n−1
i=0 di e−TEi

dn

can be fitted for large T to

f (n)(T ) = En −
1
T

ln(1 + ae−Tb)

and tend to the corresponding energy levels En
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PIMC: Convergence of the free energy
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Convergence of discretized free energy to the continuum as
functions of N for the system of two particles in two dimensions
in a quartic potential with g1 = 1, g2 = 1, T = 1, NMC = 107.
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PIMC: Energy spectra calculation
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Dependence of the free-energy and auxiliary functions f (1) and
f (2) on T for the system in the quartic potential with
g1 = 1/10, g2 = 1/9, NMC = 109. We used p = 5 effective
action and N = 64.
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PIMC: Low-lying energy levels of anharmonic
oscillator

g1 E0 Epert
0 E1 E2 E3

0.0 1.8857(1) 1.88562 2.3571(6) 2.83(1) 3.3(2)
0.1 1.9019(2) 1.90187 2.374(2) 2.82(1) —
1.0 2.0228(2) 2.03384 2.497(3) 2.94(3) —
10 2.6327(6) — 3.098(4) 3.57(3) —

Low lying energy levels of the system in the quartic potential
(g2 = 1/9), calculated using NMC = 109, level p = 5 effective
action and N = 64. The degeneracies of the calculated energy
levels are found to be d0 = 1, d1 = 2, d2 = 3, d3 = 6.
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Current research

Derivation of higher level effective actions for many-particle
systems in arbitrary dimensions
Efficient Mathematica implementation of symbolic
derivation of effective actions
Derivation of improved estimators for calculation of
expectation values (kinetic energy, potential energy, heat
capacity etc.)
Derivation of simplified effective actions for calculation of
partition functions (generalizations of Li-Broughton action)
Monte Carlo implementation and numerical verification of
derived effective actions and estimators
Derivation of recursive relations for effective actions
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Future research directions

Extensive application of the new method for more efficient
PIMC calculations in non-relativistic many-particle
dynamics, in particular calculation of properties of
Bose-Einstein condensation for systems of:

Noninteracting bosons in anharmonic rotating trap
Weakly interacting bosons in anharmonic rotating trap

Extracting large β information by using variational
methods to calculate the ideal discretized action.
Generalization of method to more complex quantum
systems:

Bosonic QFT
Fermionic QFT
Gauge theories
Topologically non-trivial spaces
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Conclusions (1)

Asymptotically expanding the ideal discretized action in ε

to order εp gives us the effective discretized action S
(p)
N

whose amplitudes converge as 1/Np.

Explicit analytical expressions for S
(p)
N have been obtained

for a general non-relativistic theory of M particles in d
dimensions for higher values of p.
The presented scheme is general, i.e. applicable to all path
integral calculations. Most other approaches focus solely on
partition functions (e.g. use cyclicity of the trace).
The newly derived effective actions agree with previous
approaches wherever comparison is possible (e.g. S(p=4)

N

equals the Li-Broughton effective action, modulo terms
vanishing for periodic boundary conditions).
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Conclusions (2)

The boundary-dependent terms in S(p)
N

lead to sought-after
1/Np convergence even when calculating amplitudes.
PIMC calculations of amplitudes, partition functions,
expectation values and energies of various theories confirm
analytically derived speedup.
Important additional advantages:

Simpler derivations;
Straightforward generalization to more complex systems
(e.g. to QFT);
Important heuristical insights, such as S[qcl] = S∗

N

∣∣
~=0

,
where S[q] is the continuum action and qcl is the classical
trajectory passing through points q0 q1 , . . . , qN

;
Possibility of obtaining large β information by calculating
S∗

N
variationally rather than through an asymptotic

expansion in ε.
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Effective p=4 discretized action

S(p=4)
N

=
∑{

ε

(
1
2

δiδi

ε2
+ V

)
+

ε2

12
∂2

k,kV +
εδiδj

24
∂2

i,jV

− ε3

24
∂iV ∂iV +

ε3

240
∂4

i,i,j,jV +
ε2δiδj

480
∂4

i,j,k,kV +
εδiδjδkδl

1920
∂4

i,j,k,lV

+
ε4

6720
∂6

i,i,j,j,k,kV − ε4

120
∂iV ∂3

i,k,kV − ε4

360
∂2

i,jV ∂2
i,jV

− ε3δiδj

480
∂kV ∂3

k,i,jV +
ε3δiδj

13440
∂6

i,j,k,k,l,lV − ε3δiδj

1440
∂2

i,kV ∂2
k,jV

+
ε2δiδjδkδl

53760
∂6

i,j,k,l,m,mV +
εδiδjδkδlδmδn

322560
∂6

i,j,k,l,m,nV

}
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	Path integrals
	Introduction
	Path integrals in quantum mechanics
	Numerical calculation of path integrals

	Improving convergence
	Effective discretized actions
	Ideal discretization
	Numerical results

	Research prospects
	Current research
	Future research directions
	Conclusions and references


