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We systematically discuss properties of quantum disordered states of the quantum Hall bilayer at �T=1. For
one of them, the so-called vortex metal state, we find off-diagonal long-range order of algebraic kind, and
derive its transport properties. It is shown that this state is relevant for the explanation of the “imperfect”
superfluid behavior and persistent intercorrelations, for large distances between layers, that were found in
experiments.
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I. INTRODUCTION

Electrons in quantum Hall bilayer systems at total filling
factor �T=1 naturally correlate in two different ways due to
Pauli principle and Coulomb interaction. If the layers are
sufficiently far apart, dominant correlations would be those
of intralayer kind because electrons in one layer are unable to
sense what is taking place in the opposite layer. This does not
hold, however, in the limit of small layer separation. Instead,
with decreasing d / lB, the ratio of the distance between layers
to the magnetic length, the correlations between electrons in
different layers gain strength and begin to compete with in-
tralayer correlations. It is the interplay of those two kinds of
correlations that we focus on in this paper.

For the case of prevalent interlayer correlations, there are
already a few theoretical models at hand which provide a
satisfactory description: 111 state given by Halperin’s1 111
wave function �111=�i�j�zi↑−zj↑��k�l�zk↓−zl↓��m,n�zm↑
−zn↓�, quantum Hall ferromagnet,2 condensate of excitons,3

or composite bosons.4 Nevertheless, both theoretically and
experimentally, it is evident that with increasing d / lB, a
quantum disordering of this state is bound to take place. For
example, the tunneling peak observed by Spielman et al.5 is
indeed sharp and pronounced, but its nature is more that of a
resonance than of the speculated Josephson effect, while the
temperature dependences of Hall and longitudinal resistances
in experiments of Kellogg et al.6 and Tutuc et al.7 do not
provide support to the predicted Berezinskii-Kosterlitz-
Thouless �BKT� scenario of a bilayer finite temperature
phase transition.2 Deeper understanding of the regime d
� lB is therefore an important, open problem in the physics
of quantum Hall bilayers and strongly correlated electron
systems in general.

Hereinafter, we present some results which pertain to
quantum disordering that is believed to take place in the
quantum Hall bilayer at �T=1. The ground state at d=0 is a
Bose condensate well described by 111 wave function due to
Halperin, while the low-lying excitations are composite
bosons, i.e., electrons dressed with one quantum of magnetic
flux.4 The idea of disordering that we employ is to allow the
formation of composite fermions �i.e., electrons dressed with
two quanta of magnetic flux� that coexist with composite
bosons.8 There are two ways to introduce composite fermi-
ons into the Bose condensate and this will be explained in

Sec. II. We then pursue a phenomenological Chern-Simons
transport theory of Drude in order to examine the elementary
predictions of those two model states. In Sec. III, we arrive at
an effective gauge theory for both cases. This enables us to
calculate the correlation functions, modes of low-lying exci-
tations, and characteristic off-diagonal long-range order
�ODLRO�. We will be primarily interested in the pseudospin
channel of these states. In one of those, the so-called vortex
metal state that we believe may appear in the bilayer at larger
d / lB as a manifestation of increasing intracorrelations, we
derive an algebraic ODLRO. In Sec. IV, we focus on the
incompressible region and the crossover around the critical
layer separation. We will argue that our field-theoretical, ho-
mogeneous picture in fact suggests that vortex metal, if rel-
evant for the strongly coupled, incompressible region, may
appear only localized in the form of islands in the back-
ground of the superfluid state for smaller d / lB. In Sec. V, we
give a more thorough analysis of the experiments on bilayer,
addressing especially the compressible, weakly coupled re-
gion, and the question of persistent intercorrelations9 in the
framework of the vortex metal state. Section VI is devoted to
discussion and conclusion. For the sake of clarity and in
order to make the text self-contained, some of the known
results8,10 will be rederived in this paper.

II. TRIAL WAVE FUNCTIONS FOR THE BILAYER

Building on Laughlin’s proposal for the wave function of
a single quantum Hall layer,11 the construction of Rezayi-
Read wave function12 for �=1/2 and Halperin’s 111 wave
function for bilayer,1 we may formally imagine that there are
two species of electrons in each layer �z ,w�, which are all
mutually correlated through intracorrelations �within the
same layer� and intercorrelations �between opposite layers�
�Fig. 1�.

Starting from the 111 function of the Bose condensate, we
will minimally deform it in order to include the composite
fermions. Given that each particle binds the same number of
flux quanta and taking Pauli principle into account, this be-
comes a combinatorial problem with two solutions. In the
first case,
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�1 = PA��
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓�

�� f�w↑,w̄↑��
i�j

�wi↑ − wj↑�2

�� f�w↓,w̄↓��
k�l

�wk↓ − wl↓�2

��
i,j

�zi↑ − wj↑��
k,l

�zk↑ − wl↓�

��
p,q

�zp,↓ − wq,↑��
m,n

�zm↓ − wn↓�� . �1�

The first line in this formula can be recognized as 111 func-
tion, followed by two �=1/2 separate layers �� f’s denote the
Slater determinants of free composite fermions�, while the
last two lines stem from the flux-particle constraint �all these
correlations are depicted on the left hand side of Fig. 1�. P
and A denote projection to the lowest Landau level �LLL�
and fermionic antisymmetrization �independently for each
layer�, respectively. In the thermodynamic limit, the relation
between the number of particles and flux quanta reads10

N� = Nb↑ + Nb↓ + Nf↑ + Nf↓

= 2Nf↑ + Nb↑ + Nb↓ = 2Nf↓ + Nb↑ + Nb↓. �2�

N� is the number of flux quanta through the system and Nb�

and Nf� are the number of bosons and fermions inside the
layer �, respectively; �= ↑ ,↓ is the layer index. Equation �2�
enforces an additional constraint Nf↑=Nf↓. Therefore, the
number of fermions is balanced in two layers, while the bo-
son numbers are not subject to any such constraint. This fact
is important because of the broken symmetry of spontaneous
interlayer phase coherence in the 111 state, which demands
nonconservation of Nb↑−Nb↓. Although we work in a fixed
�relative� number representation �allowed in a broken sym-
metry case� to account for a broken symmetry situation, we
need to have a possibility of unconstrained relative number
of bosons. Then, a superposition of the wave functions of the
form in Eq. �1� would lead to the usual representation.

In the second case which is expected to describe dominant
intracorrelations, fermions bind exclusively within the layer
they belong to �right side of Fig. 1� and the corresponding
wave function is

�2 = PA��
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓�

�� f�w↑,w̄↑��
i�j

�wi↑ − wj↑�2

�� f�w↓,w̄↓��
k�l

�wk↓ − wl↓�2

��
i,j

�zi↑ − wj↑�2�
k,l

�zk↓ − wl↓�2� . �3�

In this case, the flux-particle relation10 is

N� = 2Nf↑ + 2Nb↑ = 2Nf↓ + 2Nb↓

= 2Nf↑ + Nb↑ + Nb↓ = 2Nf↓ + Nb↑ + Nb↓,

�4�

implying that both fermion and boson numbers must be bal-
anced: Nf↑=Nf↓ and Nb↑=Nb↓.

In Ref. 8, the authors numerically calculated the overlap
of �1 with the exact ground-state wave function for a system
of five electrons in each layer with varying d / lB. Their re-
sults seem to demonstrate convincingly that �at least for
small systems� the approach with trial wave functions that
interpolate between two well-established limits, namely,
those of 111 state and decoupled �=1/2 layers, is not only
an artificial mathematical construction but also corresponds
to physical reality. Despite the fact that the number of elec-
trons in this simulation is certainly well below the thermo-
dynamic limit, the fact that the overlaps between �1 and the
exact ground state display peaks very close to 1 at small d / lB
provides confidence in the choice of wave function �1 �at
least for small d / lB�.

If there is a phase separation in between the sea of com-
posite bosons and composite fermions, the phase transition
will be of the first order. Such a scenario is launched in Ref.
13, where the authors imagine static, isolated regions of in-
coherent phase inside 111 phase. Although this model cor-
rectly explains some of the observed phenomena �e.g., semi-
circle law�, the persistence of intercorrelations in the weakly
coupled, compressible regime9 which gradually die out sug-
gests a continuous transition. Such a possibility is naturally
present in the picture of composite boson-composite fermion
mixture.

A transport theory of Drude kind can be easily
formulated8 if we consider that composite fermions bind two
quanta of magnetic flux, unlike composite bosons which bind
only one quantum of magnetic flux. As long as we remain in
the random-phase approximation �RPA�, they can all be
treated as free particles moving in the presence of the effec-
tive field which is given by the sum of the external and
self-consistently induced electric field. In the first case ��1�,
the effective field as seen by particles in the layer � is

E f
� = E� − 2�J f

� − ��Jb
1 + Jb

2� , �5�

Eb
� = E� − ��Jb

1 + Jb
2 + J f

1 + J f
2� , �6�

where J f�b�
� denote Fermi and Bose currents in the layer �

and

FIG. 1. Correlations between electrons in two layers.
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� = � 0 �

− � 0
� ,

with �= h
e2 . Transport equations are

E f�b�
� = 	 f�b�

� J f�b�
� �7�

and, as required by symmetry, 	 f�b�
1 =	 f�b�

2 , while the total
current is given by J�=Jb

�+J f
�. We define single layer resis-

tance �	11� and drag resistance �	D� as follows:

E1 = 	11J1, �8�

E2 = 	DJ1. �9�

When both layers have the same filling, �1=�2=1/2, tensors
	b and 	 f are diagonal �because the composite particles are in
zero net field�: 	b=diag�	bxx ,	bxx� and 	 f =diag�	 fxx ,	 fxx�,
and in the case of drag, we have in addition J2=0;J1 is
finite. Then, from Eqs. �5�–�9� via elementary algebraic ma-
nipulations, we obtain

	11 = 1/2	�	b
−1 + 	 f

−1�−1 + 2� + ��	 f + 2��−1 + 	b
−1�−1
 ,

�10�

	D = 1/2	�	b
−1 + 	 f

−1�−1 + 2� − ��	 f + 2��−1 + 	b
−1�−1
 ,

�11�

or in terms of matrix elements,

	xx
D = −

2	bxx
2 �2

�	bxx + 	 fxx�3 + 4�	bxx + 	 fxx��2 , �12�

	xy
D =

��2	bxx	 fxx + 	 fxx
2 + 4�2�

	bxx
2 + 2	bxx	 fxx + 	 fxx

2 + 4�2 , �13�

	xx
11 =

2	bxx
2 �2

�	bxx + 	 fxx�3 + 4�	bxx + 	 fxx��2 +
	bxx	 fxx

�	bxx + 	 fxx�
.

�14�

The formulas in Eqs. �12�–�14� include parameters �, 	bxx,
and 	 fxx, the last two being the free parameters about which
nothing can be said a priori. This prompted Simon et al.8 to
reason as follows. At large d / lB, the number of composite
bosons is small because the condensate is broken and 	bxx is
large compared to �, which is the typical Hall resistance. On
the other hand, from the experiments,14 we know that for
large d / lB holds 	 fxx
�. Furthermore, even as d / lB is de-
creased, we expect 	 fxx to increase only slightly.8 All in all,
for large d / lB, they assume 	bxx���	 fxx, and if in addition
we allow 	bxx	 fxx
�2, asymptotically we obtain

	xx
D � −

2�2

	bxx
, �15�

	xy
D � 4�� �

	bxx

2

, �16�

�	xx
11� � �	xx

D � . �17�

Semicircle law follows directly from the previous formulas,

�	xx
D �2 + �	xy

D −
�

2

2

� ��

2

2

, �18�

in agreement with Ref. 13 �semicircle law is of general va-
lidity for two-component systems in two dimensions and it
serves us as a crucial test for the line of reasoning quoted
above, which may at first sound somewhat naive�.

In the opposite limit �when d / lB is reduced�, 	bxx
	 fxx

� because 	bxx drops as a result of Bose condensation.8

When 	bxx→0, we obtain the quantization of Coulomb drag,

	xy
D � � , �19�

	xx
D → 0, �20�

as measured by Kellogg et al.6

Let us return now to the case of dominant intracorrela-
tions, the vortex metal state10 represented by Eq. �3�. From
Fig. 1, the formulas for effective fields are modified into

E f
� = E� − 2�J f

� − 2�Jb
�, �21�

Eb
� = E� − ��Jb

1 + Jb
2 + 2J f

�� , �22�

and the analogous calculation yields the resistivity tensors,

	11 =
1

2
	�	b

−1 + 	 f
−1�−1 + 2� + ��	b − 2��−1 + 	 f

−1�−1

���	b − 2��−1	b + 2	 f
−1��
 , �23�

	D =
1

2
	�	b

−1 + 	 f
−1�−1 + 2� − ��	b − 2��−1 + 	 f

−1�−1

���	b − 2��−1	b + 2	 f
−1��
 . �24�

The matrix elements of these tensors are

	xx
D = −

2	 fxx
2 �2

�	bxx + 	 fxx�3 + 4�	bxx + 	 fxx��2 , �25�

	xy
D =

	 fxx
2 �

�	 fxx + 	bxx�2 + 4�2 , �26�

	xx
11 =

2	 fxx
2 �2

�	bxx + 	 fxx�3 + 4�	bxx + 	 fxx��2 +
	bxx	 fxx

�	bxx + 	 fxx�
.

�27�

In this case as well, there are two physically significant limits
depending on the assumptions for the values of 	bxx and 	 fxx.
In the case when 	bxx
	 fxx
�,

	xx
D � −

	 fxx

2
, �28�

	xy
D �

1

4

	 fxx
2

�
, �29�
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	xx
11 �

	 fxx

2
, �30�

and the semicircle law follows �Eq. �18��, whereas �	xx
D �

= �	xx
11�. Similarly, in the regime 	bxx
�
	 fxx, we deduce the

quantization of Coulomb drag �Eqs. �19� and �20��.
We emphasize that these two limits are different from

those in Simon et al.8 For example, the semicircle law was
derived assuming that 	bxx is small �which is exactly the
opposite situation to the one in Ref. 8�, while 	 fxx is not
necessarily small with respect to �. As noted in the first case
above, the exact values for 	bxx and 	 fxx are in fact unknown
and this prevents us from discriminating between the differ-
ent proposed limits. In other words, we cannot say which one
of the proposed limits is plausible—the analysis above
serves us only to conclude that each of the two composite
boson-composite fermion mixed states is able �with certain
assumptions� to reproduce the phenomenology of drag ex-
periments.

III. CHERN-SIMONS THEORY FOR BILAYER

Encouraged by the preliminary analysis from the previous
section, we will pursue the idea of composite boson-
composite fermion mixture further by formulating an ex-
ample of Chern-Simons �CS� field theory which can contain
wave functions �1, and �2 as ground states. We do not
embark on such a task only for the sake of completeness, but
also because such a theory would enable efficient calculation
of response functions and provide insight into the long-range
order of the system and the nature of low-lying excitations. A
general drawback of CS theories is the inability to include
the projection to LLL which is the arena where all the phys-
ics must be taking place. Nevertheless, we will use these
theories established in the works of Zhang et al.15 for com-
posite bosons and Halperin et al.16 for composite fermions
because even projected to the LLL type of theories, of Mur-
thy and Shankar,17 came to the conclusion that in order to
get, in the most efficient way, to the qualitative picture of the
physics of response, the usual CS theories are quite enough
and accurate. In addition to this simplification, in construct-
ing the CS theories, we will neglect the antisymmetrization
requirement implied by Eqs. �1� and �3�. The reason for this
is that just like in hierarchical constructions, composite fer-
mions represent meron excitations �see Ref. 10� that quan-
tum disorder the 111 state, and, as it is usual when we dis-
cuss the dual picture of the fractional quantum Hall effect,18

we do not extend the antisymmetrization requirement to the
quasiparticle part of the electron fluid.

Therefore, we start from the Lagrangian given by10

L = �
�
���

†�i�0 − a0
F� + A0 + �B0���

−
1

2m
��− i � + aF� − A − �B����2�

+ �
�
���

†�i�0 − a0
B� + A0 + �B0���

−
1

2m
��− i � + aB� − A − �B����2� + �

�
�

i=F,B

1

2�

1

2
a0

i�

��� � ãi�� −
1

2 �
�,��

� d2r��	��r�V����	���r�� , �31�

where � enumerates the layers, �� and �� are composite
fermion and composite boson fields in the layer �, V↑↑
=V↓↓�Va, V↑↓=V↓↑�Ve, and the densities are �	�=�	�

F

+�	�
B. By A �and B� here, we mean external fields in addi-

tion to the vector potential of the uniform magnetic field AB,
which is accounted for and included in gauge fields aF�B��.
Therefore, we have aF�B��= ãF�B��−AB. External fields A and
B couple with charge and pseudospin, and in general we
must introduce four gauge fields aF�B��. Fortunately, not all
of them are independent. In the first case, the relation analo-
gous to Eq. �2� becomes the following gauge field equation:

1

2�
� � aF� = 2�	F� + �	B↑ + �	B↓,

1

2�
� � aB� = �	F↑ + �	F↓ + �	B↑ + �	B↓. �32�

From the equations above, it is obvious that there are only
two linearly independent gauge fields: aC= aF↑+aF↓

2 = aB↑+aB↓

2

and aS= aF↑−aF↓

2 , and Eq. �32� expressed in Coulomb gauge
reads

ikaC

2� =�	↑+�	↓��	 and
ikaS

2� =�	F↑−�	F↓��	S
F �aC and

aS are the transverse components of the gauge fields�. These
are the constraints we wish to include into the functional
integral via Lagrange multipliers a0

C and a0
S. The interaction

part of the Lagrangian is easily diagonalized by introducing
VC=

Va+Ve

2 and VS=
Va−Ve

2 .
The strategy for integrating out the bosonic functions is

the Madelung ansatz 
�=�	�+ 	̄�ei��, which expands the
wave function in terms of a product of its amplitude and
phase factor, while fermionic functions are treated, as elabo-
rated in Ref. 16. After Fourier transformation, within the
quadratic �RPA� approximation, and introducing substitu-
tions �	C

i =�	↑
i +�	↓

i and �	S
i =�	↑

i −�	↓
i , i=F, B and �C

=
�↑+�↓

2 , �S=
�↑−�↓

2 , all the terms neatly decouple into a charge
and a pseudospin channel,

LC = K00��a0
C�2 + K11��aC�2 + i��	C

B�C − �	C
B�a0

C −
	̄b

m
k2�C

2

−
	̄b

m
��aC�2 +

1

2�
a0

CikaC −
1

2

k2aC
2

�2��2VC, �33�

LPS = K00��a0
S�2 + K11��aS�2 + i��	S

B�S − �	SB0 −
	̄b

m
k2�S

2

−
	̄b

m
B2 +

1

2�
a0

SikaS −
1

2
VS��	S

B +
ik

2�
aS
2

, �34�

where �a0
C�a0

C−A0, �aC�aC−A, �a0
S�a0

S−B0, �aS�aS−B,
and 	̄b the mean density of bosons in �each� layer. In writing
down Eqs. �33� and �34�, we utilize a compact notation sup-
pressing k �−k� dependence, where all the quadratic terms of
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the type �X+Y�2 stand for �X�−k�+Y�−k���X�k�+Y�k��.
K00�k� and K11�k� are the free fermion �RPA� density-density
and current-current correlation functions.16 In the long-
wavelength limit �k /kf 
1�, they can be explicitly evaluated
from the general expressions,16

K00�k,�� =
m

2�
�1 − ��x2 − 1�

�x�
�x2 − 1

+ i��1 − x2�
�x�

�1 − x2� ,

�35�

K11�k,�� =
2nf

m
�− x2 −

k2

24�nf
+ ��x2 − 1��x��x2 − 1

+ i��1 − x2��x��1 − x2� , �36�

where x= m�
kfk

, kf the Fermi wave vector, nf the fermion den-
sity, and � the Heaviside step function. The mass appearing
in expressions for K00 and K11 is equal to the bare electron
mass only in the RPA approximation �in which we work
here�.

Focusing on the charge channel only �Eq. �33�� and inte-
grating out first �	C

B, then a0
C and �aC, we arrive at the

density-density correlator,

�00�k� =
� k

2�

2

2	̄b

m
− 2K11 + VC� k

2�

2

−
� k

2�

2

2	̄bk2

m�2 − 2K00

. �37�

In the limiting case x
1: K00� m
2� �1+ ix� and K11�− k2

12�m

+ i
2nf

m x, and we conclude that as �→0 �and then k→0�, the
system is incompressible in the charge channel, so long as
there is a thermodynamically significant density of bosons
	̄b.

In the pseudospin channel, we are primarily looking for
the signature of a Bose condensate, i.e., whether there exists
a Goldstone mode of broken symmetry and what is the long-

range order of the state. Therefore, in Eq. �34� we set A�

=B�=0 and integrate over a0
S, aS, and �	S

B,

��S�− k��S�k�� =
VS

�2
1
2VS + �

�
−

2	̄bVS

m
k2

, �38�

where �= 1
4K00

−1−K11� 2�
k

�2 �in Appendix, we give the full lin-
ear response in the pseudospin channel�. Indeed, there exists
a Goldstone mode, albeit with a small dissipative term
�which, if desired, can be removed by pairing
construction10�,

�0�k� =�2	̄bVS

m
k − i

VS

16�3/2�nf

k3. �39�

Even for large x, it is easy to check that the pole remains
at the same value if we assume 	̄b�nf �which is, in fact, the
most appropriate assumption in this case�. Also, the imagi-
nary term disappears in this case. Such robust Goldstone
mode implies the existence of a true ODLRO and the genu-
ine Bose condensate. Goldstone mode �0�k� �Eq. �39�� is
easily observed in Fig. 2, where we plotted the real part of
density-density correlation function �00�k� �Eq. �A1�� in
terms of parameters Q�k /kf and x�� / �kkf�. Other �fixed�
parameters are m= lB=1, d=0.5, �=12.6, VS=�d /�, 	̄b+nf
=1/ �4��, and �=nf / 	̄b=1/10.

Let us return to the second case, that of Eq. �3� and domi-
nant intracorrelations. According to Fig. 1, relations �Eq.
�32�� are modified to become

1

2�
� � aF� = 2�	F� + 2�	B�,

1

2�
� � aB� = 2�	F� + �	B↑ + �	B↓. �40�

It is obvious that in this case we have only three linearly
independent gauge fields, namely, aC= aF↑+aF↓

2 = aB↑+aB↓

2 , aS

= aF↑−aF↓

2 , and aFS= aB↑−aB↓

2 . Introducing the same substitutions

FIG. 2. Re �00�k� and the Goldstone mode in
the case of �1.
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as before, the Lagrangian again decouples into a charge
channel,

LC = K00��a0
C�2 + K11��aC�2 + i��	C

B�C − �	C
B�a0

C −
	̄b

m
k2�C

2

−
	̄b

m
��aC�2 +

ik

2�
a0

CaC −
1

2
VC� k

2�

2

aC
2 , �41�

and a pseudospin channel,

LPS = K00��a0
S�2 + K11��aS�2 + i��	S

B�S − �	S
B�a0

FS −
	̄b

m
k2�S

2

−
	̄b

m
��aFS�2 +

ik

2�
a0

SaFS +
ik

2�
a0

FS�aS − aFS�

−
1

2
VS� k

2�

2

aS
2, �42�

where �a0
FS�a0

FS−B0 and �aFS=aFS−B; all the other sym-
bols have retained their meanings.

This time we will not analyze the charge channel in detail.
To this end, we note that the system in incompressible in this
sector, the fact which is easily established by integrating out
all the gauge fields, densities, and boson phase in Eq. �41�.

In the pseudospin channel, a calculation of the density-
density correlator leads to the conclusion that in this channel,
the system is compressible �see also Fig. 3�. The �-� cor-
relator is

��S�− k��S�k�� =

1

k2��

� �

2�

2

�� + �� −
2	b

m
��

, �43�

where �= 1
2K00

� k
2�

�2+
2	̄b

m and �=VS� k
2�

�2−2K11. For small

k /kf and x, the correlator diverges for �0=
4�	̄b

m =const, which
obviously contradicts the original assumption for the range
of x and hence we reject this pole. For x�1 �and still k

kf�, the relations �Eqs. �35� and �36�� are approximately
K00�− 1

4�x2 and K11�−
nf

m , and we obtain two poles,

�0�k� =
4�nf

m
�1

2
+ � −

1

2
�1 + 4� , �44�

�0�k� =
4�nf

m
�1

2
+ � +

1

2
�1 + 4� , �45�

where �= 	̄b /nf is the ratio of boson to fermion density �Eqs.
�44� and �45� hold for any �, although in the physical limit
that we are presently interested, � may be regarded as small�.
In Fig. 3 we plotted the real part of the density-density cor-
relation function in the case of �2 �Eq. �A4��. In contrast to
Fig. 2, here we opt for � and Q as free parameters and set
d=1.5 and �= 	̄b /nf =1/10 as the more likely values in this
case. Distinctive feature of Fig. 3 at ��1 is the plasma
frequency �0 and the smaller singularity at ��1/10 corre-
sponds to �0. There is also a striking absence of Goldstone
mode in this case.

We now proceed to calculate ODLRO in the pseudospin
channel of �2. As it turns out, ODLRO will be nontrivially
modified and assume algebraic form. We know that interac-
tion does not affect the value of characteristic exponent19 and
therefore set VS�0. Bearing in mind that we work in the
long-wavelength limit, we arrive at the following expression
for the correlator:

��S�− k��S�k�� =
�2��P/k2���2 − �P

2 ��
	�2 − ��0�k��2
	�2 − ��0�k��2


, �46�

where we introduced �P=
4�nf

m . After contour integration over
�,19

��S�− k��S�k�� = −
2�

k2 f��� ,

where f���= 1
�1+4�

, which leads to the algebraic ODLRO,

�ei�S�r�e−i�S�r��� �
1

�r − r�� f��� � �r − r��−�1−2�+o��2��. �47�

This algebraic ODLRO persists as long as ��0 �function
f is positive everywhere in this domain�. The expression Eq.
�47� is formally reminiscent of BKT XY ordering; only the

FIG. 3. Re �00�k� in the case of �2.
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role of the temperature is overtaken by the parameter � �the
analysis of this paper assumes temperature T=0�. Pursuing
this analogy further, we conclude that the relative fluctua-
tions of composite boson and composite fermion densities
represent the mechanism which may lead to the ultimate
breakdown of the 111 condensate.

IV. EVOLUTION OF THE GROUND STATE WITH d

In order to investigate the transition from the incompress-
ible, 111-like state at lower d / lB, to the compressible, possi-
bly vortex metal-like state at higher d / lB, we are motivated
to introduce what we call generalized vortex metal. In addi-
tion to the ordinary vortex metal ��2�, we include �in each
layer� another kind of composite fermions that connect to the
composite boson sea as in the case of �1. The generalized
vortex metal is clearly the only additional option left of con-
necting electrons divided in composite bosons and composite
fermions beside the two extreme cases, �1 and �2. Again, in
this state some of composite fermions connect in the manner
of 111 state to the composite bosons and the rest of compos-
ite fermions connect exclusively to the composite bosons of
the same layer in the manner of the Rezayi-Read state. This
is succinctly represented by the following gauge field con-
straints:

1

2�
� � aB� = �	B↑ + �	B↓ + �	F↑

�1� + �	F↓
�1� + 2�	F�

�2� ,

�48�

1

2�
� � a1

F� = �	B↑ + �	B↓ + 2�	F�
�1� + 2�	F�

�2� , �49�

1

2�
� � a2

F� = 2�	B� + 2�	F�
�1� + 2�	F�

�2� , �50�

where the superscripts �1� and �2� indicate composite fer-
mion species in each layer. Chern-Simons theory easily fol-
lows from the above gauge field equations and yields incom-
pressible behavior in the charge channel. In the pseudospin
channel,

LPS = K00
�1���a0,1

FS �2 + K00
�2���a0,2

FS �2 + K11
�1���a1

FS�2 + K11
�2���a2

FS�2

+ i��	S
B�S − �	S

B�a0
S −

	̄b

m
k2�S

2 −
	̄b

m
��aS�2

+
ik

2�
a0,1

FS �a1
FS − aS� +

ik

2�
a0

S�a2
FS − a1

FS� +
ik

2�
a0,2

FS aS

−
1

2
VS� k

2�

2

�a2
FS�2 −

1

2
Vhc� k

2�

2

aS�a1
FS − aS� , �51�

where the linearly independent fields are given by aS

= aB↑−aB↓

2 , a1
FS=

a1
F↑−a1

F↓

2 , and a2
FS=

a2
F↑−a2

F↓

2 , subscripts 1 and 2 dis-
tinguish between composite fermion species and S denotes
antisymmetric combination of the densities in two layers
�like in Sec. III�. A noteworthy feature of the Lagrangian
�Eq. �51�� is the existence of Vhc, the hard-core repulsion

term between the two species of composite fermions inside
each layer. The presence of such a term �added by hand� is
natural if we imagine composite fermions residing in two
separate Fermi spheres. However, the danger of blindly in-
troducing this term is that it may incidentally bring about the
incompressible behavior �otherwise not present� in the sys-
tem. We have verified that this is not the case here; i.e., the
system remains incompressible whether or not we choose to
introduce Vhc. It therefore appears more intuitive to keep Vhc,
taking the limit Vhc→� in the end. Step by step, eliminating
all the gauge fields, we are lead to the following correlation
function:

��S�− k��S�k�� =

VS +
2nf2

m
�2�

k

2

�2 − �2	̄bVS

m
k2 + �4�

m

2

	̄bnf2� , �52�

and the low-energy spectrum is dominated by the plasma
frequency,

�0�k� =
4�

m
�	̄bnf2, �53�

where nf2 is the density of the composite fermions which
bind exclusively within the layer they belong. Generalized
vortex metal therefore is a state that only supports gapped
collective excitations, despite the presence of composite
bosons and the kind of composite fermions which enforce
interlayer correlation. If it is pertinent to the region of the
tunneling experiments of Spielman et al.5 and counterflow
experiments of Kellogg et al.,6 we believe that our homoge-
neous theory of Secs. III and IV then suggests that �general-
ized� vortex metal can appear only as localized islands �due
to presence of disorder at low temperatures� amidst the back-
ground of �1 phase �Fig. 4�. In Fig. 4 weakly coupled
vortex-antivortex pairs are depicted, i.e., meron-antimeron
pairs �due to the charge degree of freedom, there are four
kinds of merons2� inside the vortex metal phase. They are
expected to exist in the vortex-metal phase on the grounds of
disordering of the correlated phase. As argued in Ref. 10, the
inclusion of composite fermions into the 111 state ��1 and
�2� corresponds to the creation of meron-antimeron pairs.
There are more pairs and more of larger size as d increases

FIG. 4. Evolution of the ground state with varying d, before and
after the transition at d=dC. The regions with meron pairs represent
the vortex metal ��2� phase. The background represents the super-
fluid ��1� phase.
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consistently with the BKT picture of the phase that supports
algebraic ODLRO �Eq. �47��.

V. FURTHER COMPARISON WITH EXPERIMENTS

In this section, we wish to address in depth the potential
of the model states, �1 and �2, in explaining the phenom-
enology of experiments on bilayer. The key question in this
analysis is: what is the nature of the compressible phase cor-
responding to higher d / lB that still harbors some of the in-
tercorrelation present at lower d / lB?9

The answer to this question cannot be given by looking at
simple transport properties. In Sec. II, it was shown that both
�1 and �2 in certain regimes can recover the two main
experimental findings of Kellogg et al. in drag experiments:
the semicircle law9 and the quantization of Hall drag
resistance.20 On the other hand, our Chern-Simons RPA ap-
proach at T=0 stresses that all that states considered in this
paper are incompressible. However, at finite T, a finite
energy10 is needed to excite a meron in �2 and therefore �2
seems like a better candidate for exhibiting compressible be-
havior at any finite T or, at least, a very small gap. Further-
more, within the vortex metal picture, �2 allows the follow-
ing simple scenario. For 	bxx
	 fxx
�, one gets the
semicircle law derived in Sec. II. As d / lB increases, the den-
sity of bosons decreases and one enters the regime 	 fxx

	bxx
�, where �	xx

D ��	xy
D �as witnessed in the

experiments9�. The persistence of enhanced longitudinal drag
resistance9 up to very high d / lB provides additional support
to our choice of �2 which can explain the remaining inter-
correlation �drag� in the case where explicit tunneling is ab-
sent. Finally, as 	bxx→�, both resistances go to zero, the
bilayer decouples, and bosons vanish from the system.

Our picture is certainly incomplete because it does not
explicitly include the effects of disorder �which must be very
relevant for the physics of bilayer in the regimes d� lB—a
simple way to see this is to look at the behavior of measured
counterflow resistances6,7 	xx

CF and 	xy
CF that enter the insulat-

ing regime very quickly after passing through �T=1�. Fertig
and Murthy21 provided a realistic model for the effects of
disorder and in their disorder-induced coherence network in
the incompressible phase of the bilayer, merons are able to
sweep by hopping across the system, causing the activated
behavior of resistance �dissipation� in counterflow. This find-
ing is consistent with our own.

At the end our picture is in the spirit of the Stern and
Halperin proposal13 but instead of the 1/2 compressible
phase coexisting in a phase separated picture with the super-
fluid phase ��1�, we assume the existence of the vortex
metal phase ��2�. This coincides with the proposal of Fertig
and Murthy21 for the incompressible region that explains the
“imperfect” superfluid behavior. It is the continuous extrapo-
lation of this phase separated picture that brings and favors
�2 for larger d / lB �instead of �1�. There �2 is able to ex-
plain the persistence of intercorrelations through enhanced
longitudinal drag accompanied by the absence of tunneling
and phase coherence.20

Finally, we are able to account for the effects of the layer
density imbalance in tunneling, drag,22 and counterflow23 ex-

periments. Spielman et al.22 observed that small density im-
balance stabilizes the resonant tunneling peak—a simple rea-
son for this is that �1 can easily accommodate the
fluctuations in density �see comment after Eq. �2��. Because
of the same reason, Hall drag resistance remains quantized
up to larger d / lB in the presence of density imbalance. On the
other hand, the enhancement of longitudinal drag resistance
at large d / lB was also reported9 to be insensitive to density
imbalance. While the reason for this cannot be seen only
from looking at the form of �2 �this state constrains both
fermion and boson numbers in two layers, see comment after
Eq. �4��, we believe that meron excitations are responsible
for absorbing the density fluctuations, especially at finite T.

Recently, the quantum Hall bilayer was probed using
resonant Rayleigh scattering24 for samples with different tun-
neling amplitudes and when the in-plane magnetic field is
present. They detected a nonuniform spatial structure in the
vicinity of the transition, suggesting a phase-separated ver-
sion of the ground state. Our results �for zero tunneling limit
and excluding disorder� hint that such phase separation may
indeed be necessary to invoke in order to achieve a full de-
scription of the strongly coupled, incompressible phase and
the transition in a bilayer.

VI. DISCUSSION AND CONCLUSION

In conclusion, we showed how two model states, �1 and
�2, can account for the basic phenomenology of the bilayer
that came up from various experiments.

A very interesting question pertains to the model state �2.
Effectively the state represents a collection of meron excita-
tions interacting through topological interactions. A question
comes when they are in a confined �dipole� phase and when
in a metallic �plasma� phase. So in principle we can expect
that the static correlator in Eq. �47� can be reproduced by
considering a two-dimensional �2D� bosonic model with
meron excitations interacting via 2D Coulomb plasma
interaction.25 Therefore we believe that the Laughlin ansatz26

of considering �static� ground-state correlators as statistical
models in 2D can also be applied here. We expect that the
ground-state correlators in a dual approach, in which we
switch from composite fermion to meron coordinates, can be
mapped to a partition function of a 2D Coulomb plasma.27

The 2D Coulomb plasma has two different phases. For large
� �inverse T�, the charges form dipoles and the system is
with long-range correlations �no mass gap�. At some critical
�, dissociation of dipoles occurs and we have a plasma phase
with a Debye screening, and therefore a mass gap. Thus,
calculations that will capture more of the meron contribution
than our RPA approach in the Chern-Simons theory may find
a transition and exponential decay of the correlator �Eq. �47��
before reaching the 	̄b=0 limit. Indeed, our ODLRO expo-
nent in Eq. �47� at 	̄b=0 is 1 which is well above the expo-
nent of the BKT transition or critical exponent 1 /4. At that
point our system may develop a gap in the pseudospin chan-
nel and completely lose interlayer coherence �exponential
decay of correlators�. Furthermore, we expect that the super-
fluid portion of the composite boson density will disappear
leading to compressible behavior in the charge channel.19
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This is all consistent with experiments9,20 which find that, at
d / lB�1.84, the vanishing of the conventional quantum Hall
effect and the system’s Josephson-like tunneling characteris-
tics occur simultaneously. Intercorrelated bosons continue to
exist without a superfluid property and lead to enhanced �
=1 drag at large d / lB. They disappear from the system
around d / lB�2.6.9
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APPENDIX

In order to extract the response functions in functional
integral formalism, one needs to integrate over all degrees of
freedom except those of the external fields. The integration
of these fields in the RPA proverbially reduces to the Gauss-
ian integral,

� d�z,z � �exp�− z � wz + u � z + vz � �

=
�

w
exp�u � v

w

, Re w � 0.

For the pseudospin channel in the case of �1 �Eq. �1��, we
therefore obtain the following linear response:

�00�k� =
1

�
���3VS + 2�� + 1� , �A1�

�01�k� = �10�k� =
1

�

− i�

k
K11�1 + �VS� , �A2�

�11�k� =
1

�
�2VS�1 − �VS��K11 −

	̄b

m

 + K11/K00 − 4�

	̄b

m
� ,

�A3�

where �� 1
4K00

−1−K11� 2�
k

�2, ���VS− m�2

2	̄bk2�−1
, and �=VS�1

−�VS�+2�.
The response functions in the case of the pseudospin

channel of �2 �Eq. �3�� are

�00 =
1

�
� k

2�

2

, �A4�

�01 = �10 =
1

�

ik

2�
� , �A5�

�11 =
1

�
��2 + ��2K11 −

2	̄b

m
− 16W4�2�	̄b

m�

4�� ,

�A6�

where W4�−
� m�2

2	̄b�2��2 �2

1
2K00

� k
2�

�2− m�2

2	̄b�2��2 +
2	̄b

m

, ��W4− m�2

2	̄b�2��2 −2K11

+VS� k
2�

�2, and ��4W4� 2�	̄b

m�
�2

−2K11.

1 B. I. Halperin, Helv. Phys. Acta 56, 75 �1983�.
2 K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald, L.

Zheng, D. Yoshioka, and S.-C. Zhang, Phys. Rev. B 51, 5138
�1995�.

3 H. A. Fertig, Phys. Rev. B 40, 1087 �1989�.
4 I. Stanić and M. V. Milovanović, Phys. Rev. B 71, 035329

�2005�.
5 I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,

Phys. Rev. Lett. 84, 5808 �2000�; 87, 036803 �2001�.
6 M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys.

Rev. Lett. 93, 036801 �2004�.
7 E. Tutuc, M. Shayegan, and D. A. Huse, Phys. Rev. Lett. 93,

036802 �2004�.
8 S. H. Simon, E. H. Rezayi, and M. V. Milovanović, Phys. Rev.

Lett. 91, 046803 �2003�.
9 M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys.

Rev. Lett. 90, 246801 �2003�.
10 M. V. Milovanović, Phys. Rev. B 75, 035314 �2007�.
11 R. B. Laughlin, Phys. Rev. Lett. 50, 1395 �1983�.
12 E. H. Rezayi and N. Read, Phys. Rev. Lett. 72, 900 �1994�.
13 A. Stern and B. I. Halperin, Phys. Rev. Lett. 88, 106801 �2002�.
14 R. L. Willett, Adv. Phys. 46, 447 �1997�.
15 S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62,

980 �1989�.
16 B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312

�1993�.
17 G. Murthy and R. Shankar, Rev. Mod. Phys. 75, 1101 �2003�.
18 B. Blok and X.-G. Wen, Phys. Rev. B 42, 8145 �1990�; 43, 8337

�1991�.
19 S.-C. Zhang, Int. J. Mod. Phys. B 6, 25 �1992�.
20 M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K.

W. West, Phys. Rev. Lett. 88, 126804 �2002�.
21 H. A. Fertig and G. Murthy, Phys. Rev. Lett. 95, 156802 �2005�.
22 I. B. Spielman, M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K.

W. West, Phys. Rev. B 70, 081303�R�, �2004�.
23 E. Tutuc and M. Shayegan, Phys. Rev. B 72, 081307�R� �2005�.
24 S. Luin, V. Pellegrini, A. Pinczuk, B. S. Dennis, L. N. Pfeiffer,

and K. W. West, Phys. Rev. Lett. 97, 216802 �2006�.
25 A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization

and Strongly Correlated Systems �Cambridge University Press,
Cambridge, 1998�.

26 R. B. Laughlin, in The Quantum Hall Effect, 2nd ed., edited by R.
E. Prange and S. M. Girvin �Springer, New York, 1990�.

27 A. M. Polyakov, Gauge Fields and Strings �Harwood Academic,
Chur, 1989�.

QUANTUM DISORDERING OF THE 111 STATE AND THE… PHYSICAL REVIEW B 75, 195304 �2007�

195304-9


