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Introduction

* Mobility at high (THz) frequencies is more relevant than DC
mobility in many cases (e.g. bulk heterojunctions)

*In this work

*Extension of previous atomistic multiscale methodology for
simulation of DC transport in disordered polymers.

‘Identification of the origin of THz mobility
*‘How far are carriers probed by THz radiation traveling?
‘What are they hopping times?

‘Identification of parameters that affect the THz mobility
*‘Energetic disorder
*‘Temperature
‘Presence/absence of side chains

Comparison with TR THz spectroscopy.
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Multiscale method for DC carrier transport
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Multiscale method for THz carrier transport
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*THz radiation probes the
transport over short length
scales, therefore 20 nm box is
big enough
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Calculation of terahertz mobility

*Rate equations for populations of

electronic states <"
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Polymer materials in this study

* Alternating polyfluorene (APFO-3)

N Y, " donor
e Y acceptor

fluorene donor

I * Material in polymer and monomer form with and without alkyl
side chains.

* Stiff — interring torsion barriers of 250 and 120 meV (vs. 80meV
for P3HT)

* Experimental data on THz mobility available (University of
Lund, Villy Sundstrom group).
e % COMPUTING

o?
- ® LABORATORY
— —

‘o. SCIENTIFIC




(

Frequency dependence of mobility at 300K

* Hole mobility in APFO-3
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*The shape of the spectrum suggests that above THz hopping
rates are present in the system.
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What does THz radiation actually probe?

* Distance-resolved mobility:

*High frequency (10 THz) — one or two hops are actually probed.
*Low frequency (0.1 THz) — transport over ~10nm is probed.
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Temperature dependence of THz mobility

* Energy-resolved mobility * Temperature dependence
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* Thermally activated transport, but with a much smaller
activation energy (~115meV) compared to the DC case
(~250meV).
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Schematic comparison of DC and THz transport
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Comparison of THz mobilities of similar materials

* APFO-3 polymer material with alkyl side chains
* APFO-3 monomer material without alkyl side chains
* APFO-3 monomer material with alkyl side chains

—» polymer

—p» monomer with

\ alkyl side chains
monomer without

alkyl side chains
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Energetic disorder as the origin of this behavior
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Conclusion

* ldentification of the origin of THz mobility
*‘How far are carriers probed by THz radiation traveling?
*Answer: high f — 1 or 2 hops, low f — transport over ~10nm
*‘What are they hopping times?
‘Answer: above THz hopping rates are present
*|dentification of parameters that affect the THz mobility
*‘Energetic disorder
‘Answer: Reduces THz mobility
*‘Temperature

Answer: Thermally activated transport but with significantly
smaller activation energy than for DC transport

‘Presence of side chains
‘Answer: Reduces disorder and increases THz mobility

This work is supported by European Community FP7 Marie Curie Career Integration
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